Tensor products of Hecke algebras | |
Pan, F; Dai, LR | |
1999 | |
发表期刊 | COMMUNICATIONS IN THEORETICAL PHYSICS (IF:0.948[JCR-2015],0.764[5-Year]) |
卷号 | 31期号:1页码:#REF! |
通讯作者 | Pan, F (reprint author), Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China. |
文章类型 | Article |
摘要 | Tensor product of irreducible representations of Hecke algebras are discussed. It is found that the tensor product of irreps of Hecke algebras generates representations of Birman-Wenzl algebra C-f(r, q) with r = q(3) or -q(-3). A procedure fbr the evaluation of tensor product coefficients (TPC's) of H-f(q) circle H-f(q) down arrow C-f(r,q) is established when the representations of C-f (r, q) remain irreducible. An example of deriving TPC's of H-f(q) circle H-f (q) down arrow C-f (r, q) is given. It is also found that indecomposable representation of C-4(r, q) occurs in the tensor product [211] circle [31]. |
关键词 | Hecke algebra tensor products Birman-Wenzl algebra indecomposable representation |
学科领域 | Physics |
收录类别 | SCI ; ADS |
WOS类目 | Physics, Multidisciplinary |
WOS记录号 | WOS:000079463600017 |
ADS Bibcode | 1999CoTPh..31..113P |
ADS URL | https://ui.adsabs.harvard.edu/abs/1999CoTPh..31..113P |
ADS引文 | https://ui.adsabs.harvard.edu/abs/1999CoTPh..31..113P/citations |
引用统计 | 正在获取...
被引频次:2 [ADS]
|
文献类型 | 期刊论文 |
条目标识符 | https://ir.ihep.ac.cn/handle/311005/226246 |
专题 | 理论物理室 |
推荐引用方式 GB/T 7714 | Pan, F,Dai, LR. Tensor products of Hecke algebras[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,1999,31(1):#REF!. |
APA | Pan, F,&Dai, LR.(1999).Tensor products of Hecke algebras.COMMUNICATIONS IN THEORETICAL PHYSICS,31(1),#REF!. |
MLA | Pan, F,et al."Tensor products of Hecke algebras".COMMUNICATIONS IN THEORETICAL PHYSICS 31.1(1999):#REF!. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Pan, F]的文章 |
[Dai, LR]的文章 |
百度学术 |
百度学术中相似的文章 |
[Pan, F]的文章 |
[Dai, LR]的文章 |
必应学术 |
必应学术中相似的文章 |
[Pan, F]的文章 |
[Dai, LR]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论