Autoencoder-based deep belief regression network for air particulate matter concentration forecasting | |
Xie, JJ; Wang, XX; 刘宇(东); Liu, Y; Bai, Y![]() | |
2018 | |
发表期刊 | JOURNAL OF INTELLIGENT & FUZZY SYSTEMS (IF:1.261[JCR-2016],1.284[5-Year]) |
ISSN | 1064-1246 |
EISSN | 1875-8967 |
卷号 | 34期号:6页码:3475-3486 |
文章类型 | Article |
摘要 | Particulate matter (PM) is one of the most significant air pollutants in recent decades that has tremendous negative effects on the ambient air quality and the public health. Accurate PM forecasting provides a possibility for establishing an early warning system. In this paper, a deep feature learning architecture, i.e., autoencoder-based deep belief regression network (AE-based DBRN), is introduced and utilized to forecast the daily PM concentrations (PM2.5 and PM10). Prior to establishing this model, Pearson correlation analysis is applied to look for the possible input-output mapping, where the input candidate variables contain seven meteorological parameters and PM concentrations within one-day ahead, and the output variables are the local PM forecasts. The addressed model was evaluated by the dataset in the period of 28/10/2013 to 31/8/2016 in Chongqing municipality of China. Moreover, two shallow models, feed forward neural network and least squares support vector regression, were employed for the comparison. The results indicate that the AE-based DBRN model has remarkable better performances among the comparison models in terms of mean absolute percentage error (PM2.5 21.092%, PM10 19.474%), root mean square error (PM2.5 8.600 mu g/m(3), PM10 11.239 mu g/m(3)) and correlation coefficient criteria (PM2.5 0.840, PM10 0.826). |
关键词 | Deep belief regression network autoencoder particulate matter meteorological data forecasting |
DOI | 10.3233/JIFS-169527 |
关键词[WOS] | NEURAL-NETWORK ; MODEL ; PREDICTION ; POLLUTION ; ROADSIDE |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000436432400008 |
EI入藏号 | 20182805521951 |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://ir.ihep.ac.cn/handle/311005/286064 |
专题 | 东莞研究部 实验物理中心 |
作者单位 | 中国科学院高能物理研究所 |
第一作者单位 | 中国科学院高能物理研究所 |
推荐引用方式 GB/T 7714 | Xie, JJ,Wang, XX,Liu Y,et al. Autoencoder-based deep belief regression network for air particulate matter concentration forecasting[J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS,2018,34(6):3475-3486. |
APA | Xie, JJ,Wang, XX,刘宇,Liu, Y,&Bai, Y.(2018).Autoencoder-based deep belief regression network for air particulate matter concentration forecasting.JOURNAL OF INTELLIGENT & FUZZY SYSTEMS,34(6),3475-3486. |
MLA | Xie, JJ,et al."Autoencoder-based deep belief regression network for air particulate matter concentration forecasting".JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 34.6(2018):3475-3486. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xie, JJ]的文章 |
[Wang, XX]的文章 |
[刘宇(东)]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xie, JJ]的文章 |
[Wang, XX]的文章 |
[刘宇(东)]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xie, JJ]的文章 |
[Wang, XX]的文章 |
[刘宇(东)]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论