IHEP OpenIR  > 东莞研究部
Autoencoder-based deep belief regression network for air particulate matter concentration forecasting
Xie, JJ; Wang, XX; 刘宇(东); Liu, Y; Bai, Y
2018
发表期刊JOURNAL OF INTELLIGENT & FUZZY SYSTEMS (IF:1.261[JCR-2016],1.284[5-Year])
ISSN1064-1246
EISSN1875-8967
卷号34期号:6页码:3475-3486
文章类型Article
摘要Particulate matter (PM) is one of the most significant air pollutants in recent decades that has tremendous negative effects on the ambient air quality and the public health. Accurate PM forecasting provides a possibility for establishing an early warning system. In this paper, a deep feature learning architecture, i.e., autoencoder-based deep belief regression network (AE-based DBRN), is introduced and utilized to forecast the daily PM concentrations (PM2.5 and PM10). Prior to establishing this model, Pearson correlation analysis is applied to look for the possible input-output mapping, where the input candidate variables contain seven meteorological parameters and PM concentrations within one-day ahead, and the output variables are the local PM forecasts. The addressed model was evaluated by the dataset in the period of 28/10/2013 to 31/8/2016 in Chongqing municipality of China. Moreover, two shallow models, feed forward neural network and least squares support vector regression, were employed for the comparison. The results indicate that the AE-based DBRN model has remarkable better performances among the comparison models in terms of mean absolute percentage error (PM2.5 21.092%, PM10 19.474%), root mean square error (PM2.5 8.600 mu g/m(3), PM10 11.239 mu g/m(3)) and correlation coefficient criteria (PM2.5 0.840, PM10 0.826).
关键词Deep belief regression network autoencoder particulate matter meteorological data forecasting
DOI10.3233/JIFS-169527
关键词[WOS]NEURAL-NETWORK ; MODEL ; PREDICTION ; POLLUTION ; ROADSIDE
收录类别SCI ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000436432400008
EI入藏号20182805521951
引用统计
正在获取...
文献类型期刊论文
条目标识符https://ir.ihep.ac.cn/handle/311005/286064
专题东莞研究部
实验物理中心
作者单位中国科学院高能物理研究所
第一作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Xie, JJ,Wang, XX,Liu Y,et al. Autoencoder-based deep belief regression network for air particulate matter concentration forecasting[J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS,2018,34(6):3475-3486.
APA Xie, JJ,Wang, XX,刘宇,Liu, Y,&Bai, Y.(2018).Autoencoder-based deep belief regression network for air particulate matter concentration forecasting.JOURNAL OF INTELLIGENT & FUZZY SYSTEMS,34(6),3475-3486.
MLA Xie, JJ,et al."Autoencoder-based deep belief regression network for air particulate matter concentration forecasting".JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 34.6(2018):3475-3486.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
20180580.pdf(658KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, JJ]的文章
[Wang, XX]的文章
[刘宇(东)]的文章
百度学术
百度学术中相似的文章
[Xie, JJ]的文章
[Wang, XX]的文章
[刘宇(东)]的文章
必应学术
必应学术中相似的文章
[Xie, JJ]的文章
[Wang, XX]的文章
[刘宇(东)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。