IHEP OpenIR  > 理论物理室
Levinson's theorem for the Schrodinger equation in two dimensions
Dong SH(董世海); Hou XW(侯喜文); Ma ZQ(马中骐); Dong, SH; Hou, XW; Ma, ZQ
1998
发表期刊PHYSICAL REVIEW A
卷号58期号:4页码:2790-2796
通讯作者Inst High Energy Phys, Beijing 100039, Peoples R China ; Univ Three Gorges, Dept Phys, Yichang 443000, Peoples R China ; China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
摘要Levinson's theorem for the Schrodinger equation with a cylindrically symmetric potential in two dimensions is reestablished by the Sturm-Liouville theorem. The critical case, where the Schrodinger equation has a finite zero-energy solution, is:analyzed in detail. It is shown that, in comparison to Levinson's theorem in the noncritical case, the half bound state for the P wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of the P wave at zero energy to increase an additional pi. [S1050-2947(98)08908-2].
文章类型Article
学科领域Optics; Physics
研究领域[WOS]Optics ; Physics
DOI10.1103/PhysRevA.58.2790
URL查看原文
语种英语
WOS类目Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号WOS:000076373900029
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ihep.ac.cn/handle/311005/239825
专题理论物理室
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Dong SH,Hou XW,Ma ZQ,et al. Levinson's theorem for the Schrodinger equation in two dimensions[J]. PHYSICAL REVIEW A,1998,58(4):2790-2796.
APA 董世海,侯喜文,马中骐,Dong, SH,Hou, XW,&Ma, ZQ.(1998).Levinson's theorem for the Schrodinger equation in two dimensions.PHYSICAL REVIEW A,58(4),2790-2796.
MLA 董世海,et al."Levinson's theorem for the Schrodinger equation in two dimensions".PHYSICAL REVIEW A 58.4(1998):2790-2796.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
7198.pdf(157KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[董世海]的文章
[侯喜文]的文章
[马中骐]的文章
百度学术
百度学术中相似的文章
[董世海]的文章
[侯喜文]的文章
[马中骐]的文章
必应学术
必应学术中相似的文章
[董世海]的文章
[侯喜文]的文章
[马中骐]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 7198.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。