IHEP OpenIR  > 理论物理室
QUARK MASS MATRICES WITH FULL 1ST-ORDER PERTURBATION
Du DS(杜东生); Xing ZZ(邢志忠); DU, DS; XING, ZZ
1993
发表期刊PHYSICAL REVIEW D
卷号48期号:5页码:2349-2352
通讯作者CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA
摘要In view of current experimental constraints on the top-quark mass m, and the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements V(ij), we study a modified form of the Fritzsch quark mass matrices, in which two nonzero diagonal elements for the charm and strange quarks are introduced as the additional first-order perturbative terms. In a reasonable analytical approximation, this modification can yield the upper bound of m, twice as much as that predicted by the Fritzsch Ansatz. The magnitudes of the CKM matrix elements and the parametrization-invariant measure of CP violation are restricted very well in terms of ratios of quark masses, and some interesting relations such as \V(ub)/V(cb)\2 almost-equal-to m(u)/m(c), \V(td)/V(ts)\2 almost-equal-to m(d)/m(s), and \V(ub)\ almost-equal-to \V(ts)\ are obtained to better accuracy.
文章类型Note
学科领域Astronomy & Astrophysics; Physics
DOI10.1103/PhysRevD.48.2349
研究领域[WOS]Astronomy & Astrophysics ; Physics
URL查看原文
语种英语
WOS类目Astronomy & Astrophysics ; Physics, Particles & Fields
WOS记录号WOS:A1993LW39100054
引用统计
被引频次:72[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ihep.ac.cn/handle/311005/239726
专题理论物理室
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Du DS,Xing ZZ,DU, DS,et al. QUARK MASS MATRICES WITH FULL 1ST-ORDER PERTURBATION[J]. PHYSICAL REVIEW D,1993,48(5):2349-2352.
APA 杜东生,邢志忠,DU, DS,&XING, ZZ.(1993).QUARK MASS MATRICES WITH FULL 1ST-ORDER PERTURBATION.PHYSICAL REVIEW D,48(5),2349-2352.
MLA 杜东生,et al."QUARK MASS MATRICES WITH FULL 1ST-ORDER PERTURBATION".PHYSICAL REVIEW D 48.5(1993):2349-2352.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
7070.pdf(172KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[杜东生]的文章
[邢志忠]的文章
[DU, DS]的文章
百度学术
百度学术中相似的文章
[杜东生]的文章
[邢志忠]的文章
[DU, DS]的文章
必应学术
必应学术中相似的文章
[杜东生]的文章
[邢志忠]的文章
[DU, DS]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。