Levinson's theorem for the Schrodinger equation in one dimension
Dong SH(董世海); Ma ZQ(马中骐); Dong, SH; Ma, ZQ
刊名INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
2000
卷号39期号:2页码:469-481
学科分类Physics
DOI10.1023/A:1003604830131
通讯作者Inst High Energy Phys, Beijing 100039, Peoples R China ; Chinese Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
文章类型Article
英文摘要Levinson's theorem for the one-dimensional Schrodinger equation with a symmetric potential which decays at infinity faster than x(-2) is established by the Sturm-Liouville theorem. The critical case where the Schrodinger equation has a finite zero-energy solution is also analyzed. It is demonstrated that the number of bound states with even (odd) parity n(+)(n(-)) is related to the phase shift eta(+)(0) [eta-(0)] of the scattering states with the same parity at zero momentum as eta(+)(0) + pi/2 = n(+)pi and eta(-)(0) = n(-)(0)for the noncritical case, and eta(+)(0) = n(+)pi and eta(-)(0) - pi/2 = n-pi for the critical case.
类目[WOS]Physics, Multidisciplinary
研究领域[WOS]Physics
原文出处查看原文
语种英语
WOS记录号WOS:000087122500019
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ihep.ac.cn/handle/311005/237610
专题中国科学院高能物理研究所_理论物理室_期刊论文
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Dong SH,Ma ZQ,Dong, SH,et al. Levinson's theorem for the Schrodinger equation in one dimension[J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS,2000,39(2):469-481.
APA 董世海,马中骐,Dong, SH,&Ma, ZQ.(2000).Levinson's theorem for the Schrodinger equation in one dimension.INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS,39(2),469-481.
MLA 董世海,et al."Levinson's theorem for the Schrodinger equation in one dimension".INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 39.2(2000):469-481.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
4208.pdf(59KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[董世海]的文章
[马中骐]的文章
[Dong, SH]的文章
百度学术
百度学术中相似的文章
[董世海]的文章
[马中骐]的文章
[Dong, SH]的文章
必应学术
必应学术中相似的文章
[董世海]的文章
[马中骐]的文章
[Dong, SH]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 4208.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。