Applying Bayesian neural networks to identify pion, kaon and proton in BES II
Xu, Y; Hou J(侯健); Hou, J; Zhu, KE
刊名CHINESE PHYSICS C
2008
卷号32期号:3页码:#REF!
关键词Bayesian neural networks particle identification pion kaon proton anti-proton
学科分类Physics
通讯作者Xu, Y (reprint author), Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China.
文章类型Article
英文摘要The Monte-Carlo samples of pion, kaon and proton generated from 0.3 GeV/c to 1.2 GeV/c by the 'tester' generator from SIMBES which are used to simulate the detector of BES II are identified with the Bayesian neural networks (BNN). The pion identification and misidentification efficiencies are obviously better at high momentum region using BNN than the methods of chi(2) analysis of dE/dX and TOF information. The kaon identification and misidentification efficiencies are obviously better from 0.3 GeV/c to 1.2 GeV/c using BNN than the methods of chi(2) analysis. The proton identification and misidentification efficiencies using BNN axe basically consistent with the ones of chi(2) analysis. The anti-proton identification and misidentification efficiencies are better below 0.6 GeV/c using BNN than the methods of chi(2) analysis.
类目[WOS]Physics, Nuclear ; Physics, Particles & Fields
收录类别SCI
WOS记录号WOS:000253748600008
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ihep.ac.cn/handle/311005/226901
专题中国科学院高能物理研究所_实验物理中心_期刊论文
推荐引用方式
GB/T 7714
Xu, Y,Hou J,Hou, J,et al. Applying Bayesian neural networks to identify pion, kaon and proton in BES II[J]. CHINESE PHYSICS C,2008,32(3):#REF!.
APA Xu, Y,侯健,Hou, J,&Zhu, KE.(2008).Applying Bayesian neural networks to identify pion, kaon and proton in BES II.CHINESE PHYSICS C,32(3),#REF!.
MLA Xu, Y,et al."Applying Bayesian neural networks to identify pion, kaon and proton in BES II".CHINESE PHYSICS C 32.3(2008):#REF!.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2186.pdf(1193KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Y]的文章
[侯健]的文章
[Hou, J]的文章
百度学术
百度学术中相似的文章
[Xu, Y]的文章
[侯健]的文章
[Hou, J]的文章
必应学术
必应学术中相似的文章
[Xu, Y]的文章
[侯健]的文章
[Hou, J]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2186.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。