Explicit square conserving schemes of Landau-Lifshitz equation with Gilbert component
Sun JQ(孙建强); Ma ZQ(马中骐); Sun, JQ; Ma, ZQ; Qin, MZ
刊名APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
2005
卷号26期号:1页码:#REF!
关键词explicit square conserving scheme Lie-group method RK-Cayley method RK method Landau-Lifshitz equation
学科分类Mathematics; Mechanics
通讯作者Sun, JQ (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
文章类型Article
英文摘要A kind of explicit square-conserving scheme is proposed for the Landau-Lifshitz equation with Gilbert component. The basic idea was to semidiscrete the Landau-Lifshitz equation into the ordinary differential equations. Then the Lie group method and the Runge-Kutta ( RK) method were applied to the ordinary differential equations. The square conserving property and the accuracy of the two methods were compared. Numerical experiment results show the Lie group method has the good accuracy and the square conserving property than the RK method.
类目[WOS]Mathematics, Applied ; Mechanics
收录类别SCI
WOS记录号WOS:000226703700010
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ihep.ac.cn/handle/311005/225952
专题中国科学院高能物理研究所_理论物理室_期刊论文
推荐引用方式
GB/T 7714
Sun JQ,Ma ZQ,Sun, JQ,et al. Explicit square conserving schemes of Landau-Lifshitz equation with Gilbert component[J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION,2005,26(1):#REF!.
APA 孙建强,马中骐,Sun, JQ,Ma, ZQ,&Qin, MZ.(2005).Explicit square conserving schemes of Landau-Lifshitz equation with Gilbert component.APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION,26(1),#REF!.
MLA 孙建强,et al."Explicit square conserving schemes of Landau-Lifshitz equation with Gilbert component".APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION 26.1(2005):#REF!.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
895.pdf(121KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙建强]的文章
[马中骐]的文章
[Sun, JQ]的文章
百度学术
百度学术中相似的文章
[孙建强]的文章
[马中骐]的文章
[Sun, JQ]的文章
必应学术
必应学术中相似的文章
[孙建强]的文章
[马中骐]的文章
[Sun, JQ]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 895.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。