IHEP OpenIR  > 理论物理室
A convergent iterative solution of the quantum double-well potential
Friedberg, R; Lee, TD; Zhao WQ(赵维勤); Zhao, WQ; Cimenser, A
2001
发表期刊ANNALS OF PHYSICS
卷号294期号:1页码:#REF!
通讯作者Friedberg, R (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
文章类型Article
摘要We present a new convergent iterative solution for the two lowest quantum wave functions psi (ev) and psi (od) of the Hamiltonian with a quartic double-weil potential V in one dimension. By starting from a trial function, which is by itself the exact lowest even or odd eigenstate of a different Hamiltonian with a modified potential V + deltaV, we construct the Green's function for the modified potential, The true wave functions, psi (ev) or psi (od), then satisfy a linear inhomogeneous integral equation, in which the inhomogeneous term is the trial function, and the kernel is the product of the Green's function times the sum of deltaV, the potential difference, and the corresponding energy shift. By iterating this equation we obtain successive approximations to the true wave function; furthermore, the approximate energy shift is also adjusted at each iteration so that the approximate wave function is well behaved everywhere. We are able to prove that this iterative procedure converges for both the energy and the wave function at all x. The effectiveness of this iterative process clearly depends on how good the trial function is, or equivalently, how small the potential difference deltaV is. Although each iteration brings a correction smaller than the previous one by a factor proportional to the parameter that characterizes the smallness of deltaV, it is not a power series expansion in the parameter. The exact tunneling information of the modified potential is, of course, contained in the Green's function; by adjusting the kernel of the integral equation via the energy shift at each iteration, we bring enough of this information into the calculation so that each approximate wave function is exponentially tuned. This is the underlying reason why the present method converges, while the usual power series expansion does not. (C) 2001 Elsevier Science.
学科领域Physics
DOI10.1006/aphy.2001.6187
收录类别SCI
WOS类目Physics, Multidisciplinary
WOS记录号WOS:000172677300004
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ihep.ac.cn/handle/311005/225893
专题理论物理室
推荐引用方式
GB/T 7714
Friedberg, R,Lee, TD,Zhao WQ,et al. A convergent iterative solution of the quantum double-well potential[J]. ANNALS OF PHYSICS,2001,294(1):#REF!.
APA Friedberg, R,Lee, TD,赵维勤,Zhao, WQ,&Cimenser, A.(2001).A convergent iterative solution of the quantum double-well potential.ANNALS OF PHYSICS,294(1),#REF!.
MLA Friedberg, R,et al."A convergent iterative solution of the quantum double-well potential".ANNALS OF PHYSICS 294.1(2001):#REF!.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
816.pdf(269KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Friedberg, R]的文章
[Lee, TD]的文章
[赵维勤]的文章
百度学术
百度学术中相似的文章
[Friedberg, R]的文章
[Lee, TD]的文章
[赵维勤]的文章
必应学术
必应学术中相似的文章
[Friedberg, R]的文章
[Lee, TD]的文章
[赵维勤]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。